

Toyo Tanso Third R&D Strategy Briefing

Held on December 9, 2021 **Toyo Tanso Co., Ltd.**

1. Research & Development in Sustainability Management

Integration of Research & Development Strategies and Sustainability Strategies

All manner of social contribution activities

Status of Research & Development in FY2021

Promoting research & development in the five priority growth areas toward contributing to society through the development of ESG-compatible products

Priority growth area	Key development themes	Bring in technologies from outside the company Examples of joint research /	
Energy Energy	 C/C components for solar panel manufacturing Catalytic carriers for fuel cells 	commissioned research - Exit-focused application research Joint research into SiC evaluation techniques National Institute of Advanced Industrial Science and Technology	
Electronics	 Graphite materials for power semiconductor manufacturing Improvement of metal-coated graphite materials 	(TPEC) Commissioned development on recycled water purification Toyo University	
Mobility	 High-density C/C composites for oil quenching Resin material for injection molding 	Joint research into platinum support Doshisha University	
Social	 Carbon materials for chemical plants 	- Basic research	
		Joint research into porous carbon	
Life science	 Carbon brushes for home appliances Carbon materials for medical equipment 	Joint research into carbon brushes Nippon Institute of Technology	

The environment is positioned as the key theme that forms the core of the five priority growth areas

New Product Families Commercialized in the Past Year

Versatile graphite material IG-41

With higher permeability to gases than our standard isotropic graphite material IG-11, IG-41 is well suited for many uses at industrial plants, including in air bearings and filters.

Lead-free grounding brush MX-80B

The materials reduce environmental impact. Becoming popular among railway companies inside and outside Japan.

CNovel for fuel cells (for testing) MH-18-50PT

Commercializing through collaboration with outside entities, accelerating overseas expansion. Highly acclaimed by leading companies, spreading around the world over time.

Resources Devoted to Research & Development

Toward the Realization of a Sustainable Society

Advance research and development to handle environmental challenges faced by customers in each business sector. And be sure to seize the business opportunities that are expected to arrive.

Energy

[Power generation]

Grounding brushes for power generation Components for manufacturing solar power generators Next-generation nuclear power reactor core materials [Fuel cells]

Jigs for manufacturing electronic components

[Semiconductors] Components for crystal growth Components for wafer processing [Electrical parts] Jigs for manufacturing electronic components

Mobility

[Train] [Aircraft] [Automotive] Pantograph sliders Engine parts manufacturing Carbon brushes for fuel pumps Gaskets

Social infrastructure

[Communications]

Components for manufacturing fiber optics Components for manufacturing cables [General industry] Packings

Seal ring bearings

Life science

[Medical care] Target materials for CT scan systems Chromatographic column fillers [Home appliance]

Components for manufacturing LEDs Carbon brushes for cleaners

2. Outlook for Technology / Developed Products

Development of Carbon Materials that Underpin Carbon Neutral Industry

Carbon Materials that Underpin Carbon Neutral Industry

Inspiration for Innovation

Interconversion of Energy and Industry, and its Relation to Carbon Materials Industry is built on the interconversion of various forms of energy. Maximizing conversion efficiency by minimizing loss during conversions can substantially reduce CO₂. Thus, high performance is required of electronics involved in energy interconversion. To achieve high performance, carbon materials—an integral part of electronics manufacturing—continue to evolve, and are directly and indirectly involved in reducing environmental impact.

Technological Development for Materials for Semiconductor Manufacturing (1)

Corresponding Toyo Tanso targets:

Si wafer production process

Energy

Electronics

Epitaxial Si materials

- Promotion of technologies for improvement (e.g. membranes, purity) to respond to customers' constantly advancing, ever-diversifying needs
 - Improving the technology of processes based on customer needs
 - Currently developing technology to extend lives through membrane improvement, technology to improve purity to satisfy future quality requirements

Technological Development for Materials for Semiconductor Manufacturing (2)

SiC wafer production process

Aluminum Nitride: A Thermolytic Material of Growing Importance

Corresponding Toyo Tanso targets:

Pioneering for TIM (Thermal Interface Materials)

• The market is electronic component packages and thermal interface materials (sheets, grease)

- Chinese TIM filler market
 - Projected demand for AIN of 150 t/year for 5G base stations alone
- Development of AIN particle filler for TIM in the Chinese market
 - Established manufacturing technology, customer assessment ongoing in China
 - Excellent cost competitiveness based on homegrown heat treatment technology and in-house production of the graphite materials needed for manufacturing
 - Commercialization schedule for 2022

Semiconductor chip surface

Raising the adhesion of the interface improves thermal conductivity

Inspiration for Innovation

ΤΟΥΟ ΤΛΝ

Outlook for CNovel[™] Products

Fuel Cell

Mobilita

Corresponding Toyo Tanso targets:

- Sales expected to quadruple between now and 2026
- CNovel for fuel cells expected to grow an average of 30-35% per year over the medium to long term

Copyright © Toyo Tanso Co., Ltd. All Rights Reserved

Sales figures and projections for CNovel overall

Medium- to long-term sales targets for CNovel for fuel cells

CNovel[™]: Product Expansion through Collaboration with Outside Entities

Commercialization of electrode catalyst for fuel cells MH-18-50PT

- Toyo Tanso and N.E. CHEMCAT Corporation have collaborated to commercialize a platinum catalyst using CNovel. Selling around the world since April 2021
- N.E Chemcat achieved optimal dispersion of platinum
- Advanced fuel cell performance and extended fuel cell life compared to conventional catalytic carriers

Copyright © Toyo Tanso Co., Ltd. All Rights Reserved

Mass activity comparison^{*1}

(Image courtesy of N.E. Chemcat)

*1: Measurement results based on Anode/Cathode = H₂/O₂, MEA Cathode

*2: Measurement results based on DOE MEA durability evaluation 15 condition 0.65-0.95V, 30000 cycles

3. Medium- to Long-term Development Outlook

Exploring the Frontiers of Environmentally Friendly Technology

Medium- and Long-Term Efforts Toward Achieving Carbon Neutrality

Medium- and Long-Term Efforts Toward Achieving Carbon Neutrality

Contributing to Carbon Neutrality through Process Innovation

Corresponding Toyo Tanso targets:

Reducing graphite material waste by improving the rate of commercialization

- The surfaces of the graphitized blocks we produce have unstable properties, and cannot be turned into products; they thus become waste
- Revise production process with the aim of eliminating waste

Reducing waste with shaping control process technology, reducing CO₂ emissions by shortening lead times

ΥĒ

শিক্ষালা

Mahilita

- Controlling the shapes of the products in the formation process reduces processing waste
- 20-40% time reduction also possible in the baking/graphitizing processes

Promoting Recycling Technology

Corresponding Toyo Tanso targets:

Promoting the development of process technology for recycling waste carbon materials

- Promoting the development of processes for recycling waste carbon materials internally in pursuit of recycling-oriented manufacturing
- Identifying the processing techniques needed for recycling, the key factors that impact final products, and more to rise to the challenge of creating recycled products
- Plans call for efforts to recycle products used by customers as well

Prototypes of recycled graphite materials made from waste graphite materials

Carbon structure in a polarizing microscope

Exploring New Material Sources

Corresponding Toyo Tanso targets:

Researching technology for carbon fixation from low molecular weight carbon compounds

- Collaborating with the National Institute of Advanced Industrial Science and Technology to research technology for synthesizing carbon fine powders from low molecular weight carbon compounds synthesized from CO₂ from the air
- Exploring the possibilities of material sources that do not depend on fossil fuels

Electron microscope image of carbon material synthesized from hydrocarbons

Contributing to Combined Efforts to Recycle and Reduce the Environmental Impact

Corresponding Toyo Tanso targets:

ΤΟΥΟ ΤΛΝS

Inspiration for Innovation

Developing highly efficient wastewater treatment technology using recycled graphite powder

- Anammox bacteria are the basis of relatively new biological wastewater treatment technology, and can substantially reduce electricity consumption and chemical usage in the treatment process compared to common nitrification-denitrification technology
- Presently working with water treatment manufacturers and end users on implementation-oriented development

Wastewater treatment technology system that does not use electricity

Experiment for treating wastewater with recycled graphite powdersupported anammox bacteria

Overview of Different Scopes of Technology in the Supply Chain

Our Efforts Toward Achieving a Sustainable Society

APPENDIX

APPENDIX Contribution to Sustainable Development Goals (SDGs)

APPENDIX Product Range Special Graphite Products

	Products	Applications	Related markets	Percentage of sales (FY2021 forecast)
Special graphite products	Electronics applications Crucibles	 Parts for single-crystal silicon manufacturing furnaces (crucibles, heaters) Parts for compound semiconductor manufacturing equipment (crystal pulling devices, susceptors for MOCVD equipment) 	Semiconductors Solar cells LED Next-generation semiconductors	21.1%
	General industries applications Continuous casting dies EDM electrodes Hot press molds (cut models)	 Metal casting furnace components (continuous casting dies) Die manufacturing equipment components (electrical discharge machining electrodes) Industrial furnace components (heaters, trays) Optical fiber manufacturing components (heaters, furnace core pipes) 	Automotive Aircraft Semiconductors Home electronics Industrial machines Optical fibers	21.6%
	Other CT device parts High-temperature gas reactor core materials	 Silicon semiconductor manufacturing equipment components (ion implanter electrodes, glass sealing jigs) High-temperature gas-cooled reactor structural components (furnace core materials) Nuclear fusion reactor structural components (furnace wall materials) CT scanning components (target materials) 	Semiconductors Nuclear power Aerospace Medical care	5.2%

APPENDIX Product Range Carbon Products for General Industries

	Products	Applications	Related markets	Percentage of sales (FY2021 forecast)
Carbon products for general industries (mechanical applications)	Mechanical seal Bearings Bearings Pantograph sliders	 Parts for pumps and compressors (bearings, piston rings, mechanical seals) Pantograph parts (sliders) 	Industrial machines Railways Ships Automotive Home electronics	9.9%
Carbon products for general industries (electrical applications)	Small brushes Industrial brushes	 Small motor components (vacuum cleaners, washing machines, electric tools) Large motor components (general industrial, power supply, electrical equipment) 	Home electronics Power tools Railways Automotive Industrial machines Wind-power generation	14.8%

APPENDIX Product Range Compound Materials and Other Products^{Inspiration for Innovation}

	Products	Applications	Related markets	Percentage of sales (FY2021 forecast)	
Compound materials and other products [three major products]	SiC-coated graphite products MOCVD susceptors	 Silicon, compound semiconductor thin-film manufacturing equipment components (susceptors for MOCVD equipment) Parts for Si-Epi equipment (susceptors) Parts for SiC-Epi equipment (susceptors) 	Semiconductors LED Next-generation semiconductors		
	C/C composite products Bolts, nuts Three-layered trays Ion engine parts	 Parts for single-crystal silicon manufacturing equipment (crucibles, inner shields) Parts for polycrystal silicon manufacturing equipment (crucibles, trays) Parts for industrial furnaces (trays, baskets, bolts, nuts) Nuclear fusion reactor structural components (furnace wall materials) Small probe engine parts 	Semiconductors Solar cells Automotive Aircraft Nuclear power Aerospace		
	Graphitic sheet products	 Automotive parts (gaskets) Parts for synthetic quarts manufacturing (release agent) Parts for single-crystal silicon manufacturing (protective layer) Heatsink Packings for general industries 	Automotive Semiconductors Industrial machines		

TOYO T/NSO Inspiration for Innovation

Note: This presentation contains "forward-looking statements" and forecasts of business results. These statements are not historical facts but instead represent the Company's beliefs regarding future events, many of which, by their nature, are inherently uncertain and beyond the Company's control. It is possible that the Company's actual results may differ, possibly materially, from the anticipated results and financial condition indicated in these forward-looking statements.

IR Contact

E-mail : ir@toyotanso.co.jp